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/ /parameters to drift from their "desired" values.

CIAbstract Consequently then. thet zero tracking eror
-, requirement mut be suitably relaxed. The ration-

it has been found ta fi.xed error deaI-zones &I* is t.hat no parLamleter djustment should take
s defined in the existing' literaue result in place when the ou'tput erzor(s) are due to disturEb-
exiou degradation of pejormance, due to the can- once: and/or unmodeled dynamics. This can be
@aaiveness which charao'terizes the detra'inaton achi vd on an existi.ng algorit.hm by a dead-zone

f their width, Zn 4 ieseat paper, vari.ab.le nonlinearity, in the parameter adjustment law.
-zadaptive c0n whose width depends on the contribution of the

trOl of plantsI with umodled dynamics. The der- disturbances and/or unmodeled dynamics to the out-
1vation makes use of information available about put error.
the unmd~ed dynamiseboth a priori as well as The idea of a dead-sone nonlineariy in the
during the adaptation process. so as to stabilize parameter update law to avoid the effect, of dis '--
th adaptive loop and at the sa ime overom ances on adaptation was first introduced for in-
conservativeness and performance limitations of direct adaptive algorithms by Eqardt in-1980 [2)
fixod-ded zone adaptive or fixed gain controllers,. and was later amplified by Samson [3). Also, in

1982 Paterson and NarenAra used a dead-zone non-
I. U"TRODCTZON liaricy to prove stabillty for a class of direct

algorithms in the presence of bounded disturbances
Resear-h in recent years Iaa s t hat adap- with no unmodeled dynamics [4]. However, the width

tive control algorithms which, under ideal assump- of the dead zone was chosen to be constant and bad
tons, have been proven globally asymptotically to be based on a very conse'vative bound so that it
stable, indeed exhibit unstable behavior in cir- yielded only marginally stable systems with ex-
cumstances under which %hose assumptions are even tremely poor model tracking as .he examp.les [4]
slightly violated. Of the two instability mach- seem to suggest.
onios identified for those algorithms, -commonly Consequently, obtaining non-fixed accurate
referred to as "gain" and "phase" instability mech- bounds for the disturbance and high-frequency
anims III,- the former is more unavoidable and is dynamics contributions to the output error is cr.a-
triggered by the controller parameter cial to overcoming the conservativeness of the
drift which occurs as a result of nonzero output dead-zone width which they define. This depends on
errors. Tes are a consequence of the fact that, the ability to translate frequency domain
in the presence of unmodele*d dynamics and/or magnitude bounds, mo t naturally expressed by
(persistent) disturbances there can be no perfect L2

D (transfer function) watching between the compens ted L2nrms into time-domain magnitude bounds
L.) plant and the reference model over all frequencies, of instantaneously measured quantities, most nat-

even .f 'sufficiency of excitation" for the "nom- urally expressed by or- or, for our purposes., L-
L, inal" model order is guaranteed. norms which are much less conservative th.an L -

Perfect matching, on the other hand, trenslates norms.
into zero output (tracking) error, under ideal as- This paper discusses the use of a deadzone,

L. sumptions, and has been the -asis for the parameter whose width is adjustable on line, to adaptively
adjustment laws; only when the output error is zero control a plant with unmodaled dynamics, with the
does adaptation stop. Clearly, then, by design, ob)ective of maintaining its stability and m"mi-
any nonzero output error is instantaneously attrib- zinq tne adverse effects of a conservaet ve dead-
uted to parameter errors. furthermore, there is zone width to its performance. Due to space consid-
nothing in the mathematics of the adjustment mach- erations we do not treat the case of output dis ra-
anisms, as they currently stand, to prevent gain ances here: also, the topic of disturbances addi-
drift due to error sources other than parameters, tionally includ s a fixed disturbances :ejection
as for examle happens even in cases of "exact mechanIsm that introduces a modification in the box-
modeling", with "sufficiency of excitation", where ic stru.cture of the £4RAC system so is to -.mrIt
convergence to the "desired" parameter values has separate attention.
been achieved maentaxilys extraneous Sectior. 2 of this paper co.tat.'s a generic no
disturbances entering at that point can cause the translation oroblem end develoos a st ! tools
*oesearar supported Zy ONR/N00014-82-K-0582(NR 606-.)03). NSF/ECS-821C960 and ";ASA Ames ano .ang.eY
Research Centers under grant .WA/NGL-22-009-124.
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required !or its solution. Section 3 applies tte the actual transfer function of a ;plant wit,% feed-
results of the previous section to the familiar =7V back, designed to follow a reference model whic is
algorithm of the model Reference type. Other ago- prescribed by the rais fer fu cion M(a). I
r:thms can be treated similarly. Section 4 discus- absence of unmodelsd dynamics, L(s), perfect matc.n-
sea the stability of the variable width dead-zono ing is possible.
adaptive systeam and, finally, Section S contains When L{s)'O, the stability of G(e,s) can be
the concluding remarks. ensured by (requiring) enforcizg th ;ondition

2. MATHEMATICAL PRZLDflV.AIS l'Aej)(*~uJO(3)

In this section we develop the necessary tools This condition is satisfied if, for all 9 in the

for the definition of the variable width dead zone. space of admissible parameters %he follo nq is

As w" already pointed out in the introduction, the true:

objective is to find satisfactory bounds for the
contribution of the unmodele dynamics to the out- I j(W) j j I Cu) < 1+11-
put of the adaptively controlled process, so that 0 - IA !jw) (4)

an "accurate' error dead-2one can be defined. Assuming this condition is true, we proceed
The process, cmplete with unmodeled dynamics to derive an upper bound on ITGC.jW) I w para-

is assumed to be of the Doyle-stein type, with the metrized by IIH~j&)Ii. From eqn. ()
high frequency dynamics entering mltipLicatively; LOW
i.e. G(C,ju)M(w ) D (6_, )4L jw) A ,jc.-J

g (s) a g (S) (1+L(s))
p Where fl(,jW)E.4A(S~jw)

where g(s) is the actual plant transfer function,
E(s)its modeled part and i(s) the unnodeled dynam- Next, representing L(jw), D(8,jw) and A(,jw)

Ica. Typically, a bound on the magnitude of L(s) in polar ftr,
is assumed to be negligible for frequencies below
crossover, becoming only appreciable for higher 4()) IcIM(4) II I

frequencies; no phase information an be assumed. ii (e)IiIw i 1 0 CJ
The problem is then to find a bound for the output DDS~)~ -

of the adaptively controlled process due to L(s). J( )
This is achieved in two stages, as the following I Ijj~j c A-
subsections indicate. We further remark here -'at,(6)
due to feedback in the adaptive loop, the unmodeled (6)

dynamics indirectly influence all the st at An d frr G(',Z-i can be found-y
iables of the nominal adaptive loop, with the maq- A er und resp c te foues
.. ite of their: con.:t riton depending on t=he na ce m==iq and minimizing= respect.ively t.he values
of the ofputs o tr plant. of the numerator and denominator terms in (6). '-%

denominator achieves its smallest value if the

2.1 Transfer Function Mag e B g vectors (jw)A(9, w) and D(6,ju) are opoositely
all gned and, in aaditi.on,_ 1i (j;.) I Iachieves its

In this subsection we will derive a bou" _ (w) maximum allowable value for the e-interval of in-

on the magnitude of the frequency response of & tazest. The above t condLio-.s are satisfied

special class of transfer functions, that typically the phase angles are such that cL -A (E)-"D(e) +

&cise in MRAC systems. Consider an LTI transfer and jIL(jw) fl-(C). Note that condition (4) for
functiAon G~e,s) of the .orm t..he stability of G(6,s) ensures that

- ~ ts KJ)1 ~ a IR.(uA63Lf(jCu and, indeed, theG(Os) - M(s) ( - 1 e(s2 ) as I .. a
whee+h(.C,) IL()I choice L(W) I! -. CW) guarantees minimization of

where the denominator of G(-,Jw) with stabilty maintai.-Ad.

M(s) is a completely known stable LTI trans .r Unlike the dancm.ator. the numerator &qnit.-
function is independent of 0. and Is directly maximized by

1+A(6,s) - jj (s p (6)] (b) choosing j-t(jw)fi*L (.a) and appropriately to

iZ. satisfy the denominator phase angle condition.

< Consequently, from eq-. (6) we can now w- rte an up-
-4 per bound for G(e.4w) as follows:

Sunknown constant parameter vector with a (u)
specified bounds (2c) I11 G(6 1 1 1 MC()'1  0. .o

P, T1 (2d)(7)

IL,{u)1< I o(w) for knownL (w)> 0 Cle) Finally, we may search the space of allowable valms
a- 0 of e to determine the desired transfer function

-laze that when lAs)sO. G(e,si-.4(s), and %herefore bound

stable. In the context of VAS, G(9,s) represents O(W) max ;( ) C8)

• • _2
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6. CON=1.Usb2( 2
A variable deed-zone nonlinearity was intraoad

in a standard model reference adaptive control
algorithm to maintain its stability in the press" -
of unmodeled dynamics. The variable width dead-
zone is determined on-line on the basis of prior
information about Plant parameter bounds And un-
sodeled dynamics as well as about Wornmation ob-
tained during adaptation. Besides m"Atanin.
stability, the algoritAM is able so overCame the
consetvativeness of fixed dead-cone on expoential
forgetting factor adaptation mechanisms (4)|ES, a,
simulation results show. Due to space limitations,
Chos are deferred until the conference presenta-
tics of the paper. --

I. C.Z. Alens L. Valavani, H. Athens and . Stein.
l. u. oess Of Adaptive Control Algorithms An

the Presence of Unmdlod nics,* Prc 21l
Zfl Conf. on DeOLson and Control, Onla do,

4. M Dec. 1962. pp. 3-11.
Z. 8. 4"dt, -StabiliLty AftYlsO datveCn
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AA'satic. Control Conference. SAn Franc~sco. CA.
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in the following subsection we wil use 0(w) in -
order to bound the output of G(O9jw), in an ab- t _  J fe" (24)
solute value sense, given an input x(t).

2.2 Absolute Value Output BounAdin But from the previous suasection € (-) was deter-
mined such t.hat

Consider the system shown in figure 
1 with

input x(t), output y(t) and G(9,s) as defined *M> jG(e.j)] (15)
before

Hance, (14) becomes,

sit) yct) f dw 1(w) IX ow) I (t) (16)

which admittedly represents a looser bound on the
absolute value of y(t) than eq. (14). Mowever,
the bound r(t) can be calculated more readily. Te
inequality (16) has the following interpretation.
Given a bound on the frequency response of a sys-
tem, a bound on the magnitude of its output due to
an input x(t) can be calculated at any instant of

_guze I: time by using the tims history of the system input
up to and including that instant of time. We note

Dy taing the inverse Laplace tasfer of G(,), here again the time dependence of r(jw) according
wem obtain to eqn. (12).

L' I(G(,s)} - g(!.t) (9) 3. MUc WITH EZAD TMU-.IG 'G £R0 c.--I:o

rurthermoe, since 9(9.t) eprevents a lineaz-tine-
invariant system, by definition of G(8,s), the Zn this section we employ %he results of section
output y(t) is given by 2 to derive a variable dead-zone width for the

parameter update of the N-L-V algorizh,, which
Y(t) -g(,t)e 2(t) overcomes the conservativeness of the fix&4 width

Peterson-Narendra scheme [4]. 3efore we ;roces,
we briefly review the concept of parameter update

, dT g (tt-T)X() (10) using a dead-zone nonlinearity.
In [4] the authors have shown stability of the

system depicted in figure 2 below.

Substitutinq now in (10) for g(,.t-T) the
expression for the inverse Laplace transform of
G(e,s) and recalling, further, that G(8,s) is a
staZble transfer function, we can write -,

S(t, d-r d G(,,s)e.t) x M
- (t)

. d G(e.iOe f dT X(T)e Figure 2z
.- , (11)

In fig. t the standard notation is used, -%th k
Next, with u(t) representing the unit step representing parameter errors. L filtered auxil-

function we have iary) state variables v(t) output doe-r -.-Ast_,c
disturbances of bounded m ins.tude, ±ffer--x--nle

F7 tu(01 4C -)sJT t d (e-vr And uniformly continuous, I the output error wi.th
F Ix~tglu(-t j dt xlrlu(-r)e = d X(T)C

"  disturbances; q represents the (part of %t.e) error
actually used in the parameter adaptive law and is

(12) obtained by 6 passe" through the dead-zone of width

Define F-x(t)w(-r) with the symbol X(jw) end subs- E.
tituAte in (11). Then It is not O purpose here to ;resent the

details of how the above error system as shown in
- * fig. 2 , is arrived at. The reader is .steed

y}t) w G(Q LWf (I3) referred to [4] for those as weal l sie stauility
proof of that ifed algori h we s.-.n- present

here the parameter adapti.ve :.aws, with1 --%a dead-
By the Cauchy-Schvar z inequality it follows from zone nonl.inear 7ty in their s. l.est !or--. for the
(2.) zm sake of compltinq the proosm escrp:o. n.n.

forms the basis for tne developnts ;. --e ;resent
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paper. The parameter ad~ustment is as described for P(es). That is, .he designer knows
by eqns. (17) elow. () an upper bound on the relative degree n = 

of
N (_.s)

(ii) an upper bound on the degree n of P(e.si
kCt) - ¢tT - -a(t)n(t) (iii) that P(e.s) s :minim phase

-- .l (t)C(t) (17a) iv} tihe sigi of t-he high frequency gain of p(es

with n = 6(t). le(tI>n 'he I (s) par of the plant represents the (multi-
0 le~t)I<E plicative) uncertainty associated with the nominalS I()IE (17b) plant p(e,s). This uncertainty is due to high fze-

quency dynmics, which are assumed of unspecified
whore E represents the width of h dead-zeo. structure but satisfy a magnitude constraint

11(w[1L M,) as already mentioned. Further,
lthough in E41 the discussion is not particularly o

enlightening as to how exactly the magnitude E is we note that the "actual" plant representation
decided upon, it is the present authors' P(6_,s) l lA(s)] will not in general satisfy any of
conclusion that most likely, in [4) the four standard assumptions listed above. This

fact becomes pivota.l In the inability of the adap-
Z > I Iv(t) 1. - -- lv () 1 (i) .ve controller to achieve transfer function match-

t inq between the compensated plant and the referce
model. As a result, it becomes impossible for

and, therefore, is very conservative as te sa" general inputs to drive the tracking (output) er-
authors have pointed out in [5). We next proceed rt to zero. However. one may expect the tracking
to analyze the original NLV ModelRefarence algo- error to be small, if the plant is excited by sig-
rithm. as represented in Fig. 3. with the plant nals with dominant low frequency content over the
dynamics now replaced by the actual plant range where P(.s) is a 122! approximation to the
P~e,sj s)[1£C)), actual plant transfer function.

Zn what follows we will next show that the
error system underlying the structure in figure 3
differs from that of the same structure, as shown
in fig. 2. where L(s)n0, only by an additive per-
turbation toerm in C-1e output. Tis term can be
bounded using the results of Section 2 and a var-

"-- iable width dead-zone tan be defined for the adap-
YO tation mechanism. Stability of the scheme is

subsequently discussed in Section 5.
We start by considerinq first the case where

.(s-O in Figure 3. Zn this case the standard
MRAC assumptions about the plant are true. ThereX . I exists a vector k-(6) of fixed gains which, when
applied to the system, results in matching of thex We A compensated plant transfer function with that of

the model. we adoot the shorthand notation C (9)
I S and C, (e) to indicate the LTZ transfer functions

Cb.k9) C Ck(Q)) and C k*(e),k;(8)) respectively. -;ow
)--------------- I i - 2 w-2

assuming I. s) #O but mintaining the same defini-
w IM x tions of Cl CkCG) . C 1(6) and C 2(k2'Ce),k;e)),

C2 ( ) based on the reduced model, we may derive

an expression for the error system as follows,
where for convenience, the argument's' has been
suppressed throughout.

Y C IG)PCB) (1.L]

Figure 3 R l+C1  ()c 2 2C)P(C) [l+L
n =, : Z ted i e) yz em s)

C. ( ,)cP( 2  CO(8)P) i19

The component P(t.,a) incorporates the desiqner's
knowledge of the dominant, low frequency response By definition of CI () and C (eM we have
of the plant, including a vector e of uncertain _ -
.arameters, known only within precomutanle bounds. :1 .) P (%_)

Thie standard .PAC assumptions auout the plant hold ",r (')C ,'I.(.-- I -" )  •

LI



Using this fact and i.ntroducLn; the notation

A() - Cl(e)c2 (eP(e) we can write q. (19) i.1 a d (24)

more compact foarm u - i

where eqn. (12) has been used for caIcL aton of

. (21) the tansform U(jw) and . (1w) for the input u(t)
and signals w (t) respectively. An ada(tation +law

Next, defining 1(t) - t(t)-k* refering to fig. 3 of the form descried in eqn. (17) can % I.: be

and inrchangLng time domen and transformed employed with the width of the dead zone defined
quantities, we derive an expression for 6 as given by eqn. (24). The. resulting scheme is stable and
in e n. (22). an outline of its stability proof is given in the

following section.

T T (22)
lA (F w~r) The stability proof of the proposed a.lgoritn(tO.)1C+1L -- with variable dead-zone follows along very similar

lines for the most pert with that in [4]. aowever,For the case where L(s)-O. this result reduces t in the present case it is additionally conditioned
the standard au.ented MMC error system of on the reference model definition and the ad-,ssib e
Merendra, Lin Aad valavani with L-l' M. The new parameter set. as eqn. (4) of section 2.1 implies.
error system is shown in figure (4) with a variable More specifically, the space of admissible para-
dead zone non-lLneazity added to the output signal meters is implicitly defized through the reference
path. model by eqn. (4), in con3unction with condition

(2) and is such that the desired (class of) ref-
erence model(s) remai.ns stable in the presence of
the unmodeled dynamics L(s) of t! plant. .-is is
a standard &Ad reasonable assumption made !-% the
design of all fixed parameter controllers as well.
Due to space considerations we will not elaborate'7 on this further- but will Anstead refer the reader
to (6) for more details.

Consequently, given en. (4), which is fun-
M. 4amental even for a non-adaptve design, r-%e effect

I*Alf)1 +11of uzmodeled dynamics can be represented as an out-
put perurbation v(t) as suggested in e*q.. (22) and
depicted in fig. 4. v(t) is the output of a stable
linear system which is bounded for bounded Lnputs.
We next proceed to outline the steps for proving
boundedness of x.u,;,w and the output error 6.

The boundedness of R follows direciy fro=
Figure 4: the standard Lyapunov function definition

(Vi) - 1 (fTZ and the adaptation law :",&; in

conjunction with eqn. (22) where 1(t) is defined.
Also, fr:om the defianition of ".he dea-zene, *.he

We observe that the system is of the form show in T
fig. 2. In order to specify a stable adaptve term--Tk can be bounded above and below ty bounds
law, we need to find a bounding signal E(t)>v(t)ly't. of the form

we may redraw the error system using the fT T f

fact that 2- -k and the input to the plant in fME())j jT.v( T'< _ ) - -
-- T (25)

Tigure 5 is k w r. The resulting represen- where f. (-) and f () are continuous f-.-ctions
tation is shown in figure 5 below. 1 2
fr O prec~omted bounds on 0, bounds on k- can be of E(t).
preco puted also. we now make the definition Next, by the definition of the Lfu.no.-f.nc-

tion, its time derivative, in conjumirt-ca with the
k - Imax k.I (23) adaptation law given by equ. (l2a), can -I writter.

as
where the maximization over is carried out in- v 23)- (26)
dividuall Over every component of k. Using (23) T
in conluCtion with the results of oction 2 i.t
readily follows that an upper bound E(t) for v(t) from the fact that
can be COMputed. More specifically, we can wri:e

)




